Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
World J Gastroenterol ; 26(32): 4802-4816, 2020 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-32921958

RESUMO

BACKGROUND: Multiple sites of metastasis and desmoplastic reactions in the stroma are key features of human pancreatic cancer (PC). There are currently no simple and reliable animal models that can mimic these features for accurate disease modeling. AIM: To create a new xenograft animal model that can faithfully recapitulate the features of human PC. METHODS: Interleukin 2 receptor subunit gamma (IL2RG) gene knockout Syrian hamster was created and characterized. A panel of human PC cell lines were transplanted into IL2RG knockout Syrian hamsters and severe immune-deficient mice subcutaneously or orthotopically. Tumor growth, local invasion, remote organ metastasis, histopathology, and molecular alterations of tumor cells and stroma were compared over time. RESULTS: The Syrian hamster with IL2RG gene knockout (named ZZU001) demonstrated an immune-deficient phenotype and function. ZZU001 hamsters faithfully recapitulated most features of human PC, in particular, they developed metastasis at multiple sites. PC tissues derived from ZZU001 hamsters displayed desmoplastic reactions in the stroma and epithelial to mesenchymal transition phenotypes, whereas PC tissues derived from immune-deficient mice did not present such features. CONCLUSION: ZZU001 hamsters engrafted with human PC cells are a superior animal model compared to immune-deficient mice. ZZU001 hamsters can be a valuable animal model for better understanding the molecular mechanism of tumorigenesis and metastasis and the evaluation of new drugs targeting human PC.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Pancreáticas , Animais , Cricetinae , Modelos Animais de Doenças , Xenoenxertos , Humanos , Mesocricetus , Camundongos , Neoplasias Pancreáticas/genética
2.
J Hazard Mater ; 233-234: 177-83, 2012 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22819476

RESUMO

A series of experiments were performed to evaluate the continuous separation of cesium based on an electrochemically switched ion exchange (ESIX) process using a diaphragm-isolated reactor with two identical nickel hexacyanoferrate/porous three-dimensional carbon felt (NiHCF/PTCF) electrodes as working electrodes. The effects of applied potential, initial concentrations and pH values of the simulation solutions on the adsorption of cesium ion were investigated. The adsorption rate of cesium ion in the ESIX process was fitted by a pseudo-first-order reaction model. The experiments revealed that the introduction of applied potential on the electrodes greatly enhanced the adsorption/desorption rate of Cs(+) and increased the separation efficiency. H(3)O(+) was found to play a dual role of electrolyte and competitor, and the adsorption rate constant showed a curve diversification with an increase in pH value. Also, it was found that the electrochemically switched adsorption process of Cs(+) by NiHCF/PTCF electrodes proceeded in two main steps, i.e., an ESIX step with a fast adsorption rate and an ion diffusion step with a slow diffusion rate. Meanwhile, the NiHCF/PTCF film electrode showed adsorption selectivity for Cs(+) in preference to Na(+).


Assuntos
Carbono/química , Césio/isolamento & purificação , Ferrocianetos/química , Níquel/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Césio/química , Eletrodos , Troca Iônica , Cinética , Resíduos Radioativos , Reciclagem/métodos , Águas Residuárias/química , Poluentes Químicos da Água/química , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA